|
|
Статья взята из журнала "Знак вопроса" N 1-2, 1993 год. ---------------------------------------------------------------- В.А. Ацюковский С.Н. Зигуненко ОТКУДА ДУЕТ ЭФИРНЫЙ ВЕТЕР? -------------------------- Диалоги об эфиродинамике К читателю Материал, предложенный вашему вниманию, читатель, не случайно подается в виде диалогов. Еще мудрейший Платон прибегал к этому приему, когда ему нужно было растолковать читателям те или иные философские умозаключения. Один из героев его "Диалогов" изрекал высокие истины и, стало быть, претендовал на роль Учителя, а другой - надо понимать Ученик - старался осмыслить их и в меру сообразительности задавал наводящие вопросы, позволяющие изречь новую порцию истин и в конце концов высветить суть проблем. Аналогично решили поступить и мы. Во-первых, потому что так действительно распределились роли между соавторами. Один из них по образованию инженер, кандидат технических наук, не первый десяток лет занимается проблемами эфиродинамики и вполне может претендовать на роль человека, которому есть что сказать. (Пусть сказанное им и не истина в последней инстанции, но мысли эти, скажем так, нетрадиционные, заставляющие думать.) Другой же - писатель и журналист - в высоких материях искушен меньше, зато вопросов во время разных бесед и пресс-конференций задал не одну тысячу и полагает, что изрядно поднаторел в этом. И мы надеемся, что вместе сможем доходчиво и понятно рассказать, что это за штука такая - эфирный ветер, откуда он подул и стоит ли вам ориентировать свой нос еще и на этот, то ли воздушный, то ли еще какой поток... Авторы: АЦЮКОВСКИЙ Владимир Акимович - кандидат технических наук, руководитель одной из лабораторий НИИ авиационного оборудования. Автор более 50 научных работ. ЗИГУНЕНКО Станислав Николаевич - журналист, автор многих научно-популярных статей и очерков о науке и технике. ДИАЛОГ ПЕРВЫЙ о кризисе современной физики, или разговор о том, как плохо опираться на постулаты, которые сам же и выдумал. В.А. Все основные теории физики, родившиеся в ХХ столетии, имеют в своей основе квантовую механику и специальную теорию относительности А.Эйнштейна. А эти главные теории основываются на постулатах, т.е. положениях, которые принимаются без доказательств, как аксиомы. С.З. Но такое положение вещей, насколько мне помнится, вовсе не Эйнштейном было заведено. Еще в школе, изучая Евклидову геометрию, мы зубрили некие аксиомы. Так ведь? В.А. Все это верно... И в квантовой механике начало постулативному подходу положил не Эйнштейн, а по всей вероятности, М.Планк. Чтобы спасти выведенный им закон излучения абсолютно черного тела, он предположил, что энергия этого излучения строго пропорциональна частоте излучения, а само излучение происходит определенными микропорциями - квантами. Иначе попросту получалось, что энергия равна бесконечности, чего никак не может быть на самом деле. Обо всем этом Планк и доложил 14 декабря 1900 года на заседании Берлинского физического общества. И к его предположению физики отнеслись весьма положительно, поскольку оно вскоре подтвердилось на практике. Однако плохо то, что в дальнейшем отступления от этого закона, которые опять-таки случались на практике, во внимание почему-то не принимались. Тем самым закон был как бы абсолютизирован, чего нельзя делать ни с каким законом, касается ли он науки или, скажем, практической жизни общества. Но дело было сделано. Был создан прецедент, показавший многим: можно на каком-то частном основании выдвинуть постулат, а потом, опираясь уже на него, строить теорию. С.З. Ну и в чем тут особая опасность? Если теория правильная, то в конце концов не так уж важно, на чем она базируется... История науки знает немало случаев, когда из неправильных предпосылок делались правильные выводы. Скажем, тот же закон сохранения материи был в свое время сделан на основании теории флогистона (некая материя, из которой, как считалось, состоит многое в этом мире), впоследствии, как известно, не подтвердившийся... В.А. А опасность тут такая. Теория, овладев умами, заставляет их затем фильтровать опытные данные, становится плотиной на пути действительного познания явлений. Вспомните хотя бы, какой крови стоило опровергнуть теорию Лысенко. Находились ведь у него последователи, которые в угоду тогдашней научной моде не останавливались и перед прямой фальсификацией данных. А уж о том, что в расчет прямо не принимались те результаты, которые противоречили господствующей догме, и говорить не приходится. Такое случалось сплошь и рядом. "Ошибка опыта, чего на нее смотреть. Ведь этого не может быть, потому что не может быть никогда..." Примерно такая картина получилась и в нашем случае. Судите сами. В 1905 и далее в 1910 году А.Эйнштейн выдвинул уже пять постулатов, на основе которых затем и построил свою знаменитую специальную теорию относительности. Вот они, эти постулаты: 1. В природе отсутствует мировая среда - эфир. 2. Все инерциальные системы отсчета одинаковы, т.е. все системы, движущиеся равномерно и прямолинейно, равноправны между собой. И более того, нет способа внутренними измерениями в системе определить, движется она или нет. 3. Скорость света не зависит от скорости движения источника и постоянна в любой системе отсчета. 4. Время и координаты какого-либо события связаны между собой через скорость света. 5. За одновременность событий принимается момент прихода светового сигнала от этих событий. С.З. Пять постулатов для одной теории - это, наверное, многовато. Но видно, у Эйнштейна были какие-то основания взять их за основу? В.А. В том-то и дело, что, если говорить строго, все эти пять постулатов не имеют под собой никакого основания! Правда, поначалу были использованы ссылки на якобы нулевой результат эксперимента Майкельсона по обнаружению эфирного ветра. Однако извините! Давайте заглянем в первоисточники. Перед нами как раз тот случай, когда надо "зрить в корень". Я ознакомился с работами Майкельсона на английском языке и выяснил довольно-таки интересные факты. Первый эксперимент был проведен А.Майкельсоном в 1881 году. Однако этот опыт не обладал нужной точностью и потому точкой для дальнейших рассуждений быть не может. Ведь не случайно же сам А.Майкельсон в 1887 году провел дополнительную серию экспериментов. Как это было, мы с вами еще поговорим подробно. А сейчас - сразу о результате. Майкельсон в своей работе ясно указывает, что в 1887 году он зарегистрировал эфирный ветер. Правда, скорость его оказалась не 30 километров в секунду, как предполагалось, а всего лишь несколько километров в секунду. В 1904 году на Кливлендских высотах аналогичные опыты проводил Э.Морли и получил скорость эфирного ветра более трех километров в секунду. Позже в лаборатории на горе Маунт-Вилсон результаты опытов показали скорость около десяти километров в секунду. Но, как говорится, к тому времени "поезд уже ушел". Авторитет А.Эйнштейна и его теории стал настолько велик, что эти данные просто проигнорировали... С.З. В общем, тут мы имеем ситуацию, как в английском детективе: господин Х не может быть преступником, поскольку он происходит из хорошей семьи и получил правильное воспитание... В.А. Ну, насчет преступника - это слишком. Хотя на совести Эйнштейна есть трупы некоторых научных теорий. Но факт остается фактом: по сути, мы имеем дело с научной фальсификацией, с которой долгое время мирились, пока она не стала мешать ученым-практикам. Теоретики ведь иногда поступают, как малые дети: если созданая теория им очень нравится, они будут оберегать ее, как лююбимую игрушку, не замечая всякие там факты, полученные экспериментаторами. "Мало ли что они там намеряли!" Примерно так было и в случае с А.Эйнштейном. Получив первые положительные результаты в своей специальной теории относительности, в 1915-1916 годах он приступил к возведению здания общей теории относительности, добавив к имеющимся еще пять постулатов. Это были: 1. постулат о связи пространства и времени с гравитационным полем; 2. распространение инварианта четырехмерного интеграла на теорию гравитации; 3. ковариантность, то есть независимость систем уравнений относительно преобразований; 4. равенство скорости распространения гравитации и света; 5. наличие в пространстве эфира... С.З. Минуточку, минуточку! Если я правильно понял, в специальной теории относительности Эйнштейн наличие эфира отрицает, зато в общей теории относительности всячески приветствует? В.А. Да, дела, получается, обстоят именно так: к 1920 году мировоззрение великого теоретика развернулось на 180 градусов, но этого предпочли не замечать. Хотя он сам пишет в 1920 году, что "пространство немыслимо без эфира", а в 1924 году, возвращаясь к той же теме, утверждает: "Мы не можем в теоретической физике обойтись без эфира". С.З. Тут бы самое время разобраться, что это за эфир такой? Как это можно его то начисто отрицать, то вновь к нему обращаться? Куда, в конце концов, смотрели экспериментаторы? Неужто они не могли прямо ответить на вопрос: "Есть эфир или нет его?" В.А. В том-то вся и беда, что на этот вопрос с достаточной степенью категоричности не удалось ответить и по настоящее время! Однако давайте не будем ставить телегу впереди лошади. И сначала доведем до конца рассказ о том, к чему привело такое "жонглирование" постулатами... С.З. Уж верно, ни к чему хорошему? В.А. Вы правы, и тем не менее хроника событий развивалась так. Кроме вышеназванных, в квантовой механике с 1900 по 1927 год добавилось не менее 9 новых постулатов. Это и принцип квантования энергии М.Планка, о котором мы уже говорили. И стационарность орбит в атоме, выдвинутая Н.Бором в 1913 году. И всеобщность корпускулярно-волнового дуализма, согласно которому по предложению Л. де Бройля начиная с 1924 года ученые стали считать, что электрон может проявлять в одинаковой степени свойства как частицы, так и волны... И так далее. И все в том же духе. Возьмем в качестве примера геометрии Евклида и Лобачевского. Евклид предположил, что на плоскости через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную первой. И этот факт прекрасно подтверждается всем тысячелетним опытом человечества. Лобачевский предположил, что таких прямых, параллельных данной, но не совпадающих между собой, можно провести не менее двух. На этом построена его неевклидова геометрия. Однако это исходное положение никогда не было подтверждено практикой, а значит, оно не отражает реальной действительности. Следовательно, реальная ценность геометрии Лобачевского равна нулю. На ней нельзя базировать ни одного практического начинания. Примерно то же самое произошло и в современной физике. Судите сами. Постулативный подход к построению теорий в свое время получил "теоретическое обоснование" со стороны главных идеологов современной физики, прежде всего А.Эйнштейна, который считал, что многие аксиомы физики могут быть "свободно изобретены". Сюда же можно прибавить Н.Бора, который полагал, что физика должна развиваться посредством "сумасшедших" идей, Э.Маха, проповедовавшего принцип "экономии мышления", и еще некоторых других теоретиков. Положительные результаты опытов Майкельсона, Морли и Миллера были ошельмованы и забракованы. Зато были подняты на щит отрицательные результаты поисков эфирного ветра в экспериментах Кеннеди и Иллингворта, Пиккара и Стаэли, а также группы Седархольма и Таунса. Далее, вторая теоретическая основа современной физики - квантовая механика - возвела в принцип непознаваемость микромира, узаконив в качестве философской основы принцип неопределенности Гейзенберга. Получается, что в микромире вообще нет никаких точных законов и механизмов, а есть только "вероятность появления электрона в данной точке пространства". Причем нигде не говорится, чем же обусловлена эта самая вероятность и почему она имеет именно такую, а не другую величину. Сразу же получила на этой основе обоснование "элементарность", т.е. бесструктурность элементарных частиц, которые тем не менее имеют массу, заряд, магнитный момент, спин... То есть те свойства, которые можно измерять в эксперименте. Однако нигде не указываются причины, по которым эти свойства стали возможны! Заодно зачастую предполагается, что частицы эти не имеют размеров. Правда, при этом оказалось, что точечные частицы, не имеющие размеров, но имеющие заряд, должны обладать бесконечно большой энергией. Математически эту трудность научились обходить, а физический смысл уравнений, похоже, перестал интересовать многих теоретиков. "Подумаешь, парадокс! В этом странном микромире еще и не такое бывает..." Наконец, в довершение всего, из физики исчезла материя. Все процессы стали сводить к тем или иным пространственно-временным искажениям - искривлениям пространства, дискретности пространства-времени и т.п. У времени появилось "начало" - момент "Большого взрыва", у пространства - сингулярность (возможность возникновения из некой единой точки всей Вселенной). Поле приобрело ярлык "особого вида материи", как будто такое название хоть что-то объясняет. В результате всего этого современная физика стала все более склоняться ко всякого вида абстракциям, не имеющим никакого отношения к реальной действительности. Стали вводиться разнообразные частицы, обеспечивающие различные взаимодействия, например, глюоны, гравитоны, гравитино, "векторные бозоны" и т.д., а также многомерные пространства с числом измерений до 506! Но почему же тогда все это свойственно только микромиру, а в макромире никак не проявляется? С.З. Вам не кажется, что мы с вами поменялись ролями. Теперь вы начинаете задавать вопросы, на которые придется отвечать мне. Ну что же, попробую... Из всего вышесказанного, похоже, вытекает, что современная теоретическая физика микромира стала во многом напоминать некую религию. Но с религией, по крайней мере, дело обстоит значительно честнее: там сразу говорится, что некоторые дела и помыслы Господни нам понять не дано. И точка. Физики-теоретики же так просто сдаваться не хотят. И пытаются обойтись своими силами, продолжая нагромождать горы все новых и новых канонов. За деревьями они уже давно не видят леса, но все не хотят себе в этом признаться. Никто, например, не может сегодня ответить на такой простой вопрос: "Почему же все-таки произошел тот самый 'Большой взрыв', с которого все и началось?" Зато очень многие делают вид, что такого вопроса вовсе не существует, и пишут толстенные монографии, посвященные рассмотрению процессов, которые должны были произойти в первые миллисекунды после этого взрыва. Конечно, это тоже интересно. Но так ли уж суть важно, если мы не знаем ответа на главный вопрос? В.А. Вот-вот, именно это я и хотел подчеркнуть. Природе ведь нет дела до ученых замысловатостей. "Не умеете решать задачи - тем хуже для вас!" И она продолжает подбрасывать все новые вопросы. Вот уже более четверти века бьются ученые умы над решением проблемы управляемой термоядерной реакции - и все никак. Не потому ли, что задачу стали решать не с того конца? А что мы будем делать с проблемами НЛО, полтергейста? С.З. Вы задаете вопросы, на которые пока нет ответа. Хотя, впрочем, последние годы предпринимались многочисленные попытки как-то выправить положение. Например, академик А.Логунов и его коллеги в МГУ много сделали для уточнения теории относительности. Проблемами времени много занимался пулковский астроном и теоретик Н.Козырев. Примерно те же идеи развивает сегодня член-корреспондент Академии наук Беларуси А.Вейник. В.А. И тем не менее пока эти попытки не привели к особым практическим результатам. И чтобы сдвинуть этот тяжелый воз, похоже, придется вернуться к истокам, к классической физике. С.З. Ну что же, давайте попробуем... ДИАЛОГ ВТОРОЙ о методологии эфиродинамики, или разговор о том, как можно выкрутиться из создавшегося положения. В.А. Поверьте, я всем этим занялся не от хорошей жизни. Насущные потребности каждодневной практики заставили. Вспомните хотя бы известный анекдот. - Что такое электричество? - спрашивает профессор студента на экзамене. - Забыл, - сокрушенно сознается тот. - Вот беда, - вздыхает профессор, - один человек в мире знал, что это такое, и тот забыл... И это было бы смешно, если бы не было грустно. Потому что отсутствие четких понятий, а значит, и знаний попросту мешает работать. Я впервые столкнулся с такой проблемой лет тридцать тому назад. Надо было решить элементарную на первый взгляд задачу, имеющую важное практическое значение: определить, как будет распределяться ток между двумя электродами, опущенными в морскую воду. Казалось бы, подставь все параметры в уравнения Максвелла - и ответ готов. Но получалось, что в таком случае уравнения попросту не имеют решения. Я поначалу думал, что трудности решения существуют только в моей голове, подкидывал задачу многим профессорам и докторам. Но тщетно - орешек оказался не по зубам и им. И тогда я впервые осознал, что существует целая серия вопросов, на которые современная наука ответить не в состоянии. Ну а раз теоретики молчат, значит, нам, специалистам-прикладникам, приходится уповать на собственные силы. Я не смог придумать ничего иного, как в 1979 году организовать в подмосковном городе Жуковском, где я живу, первую в мире конференцию по эфиру. И забегая вперед, должен сказать, что именно такой подход позволил нам разрешить многие загадки. С.З. Но ведь всем известно, и мы сами об этом уже говорили, что теория эфира еще в начале века была признана антинаучной, ошибочной... В.А. Ну, кто тут ошибался - Эйнштейн ли, который то признавал эфир, то отвергал его, или те, кто его слушал, - мы с вами еще разберемся... С.З. Но в любом разбирательстве надо от чего-то отталкиваться. Что мы примем в качестве исходной точки? В.А. Отталкиваться надо всегда от реальных фактов. В данном случае, от физики Ньютона, который, как известно, гипотез не измышлял. Заметил он определенные закономерности - вывел закон всемирного тяготения. Ну а не смог выяснить, что собой представляет сила гравитации, так этого, по-моему, физики не знают до сих пор. В общем, нужно отметить, что лично у меня к классической физике претензий нет: она вся базируется на опыте и, следовательно, соответствует реальной практике. А вот дальше надо разбираться, что отражает действительность, а что, извините, нет. Тот же Эйнштейн, например, в основу своей теории положил незыблемость скорости света. Говоря научным языком, в качестве всеобщего физического инварианта принял четырехмерный интеграл, составной частью которого является скорость света. Но эта величина ведь есть частное свойство (скорость) частного явления (света)! Спрашивается, можно ли использовать частные свойства частного явления для всеобщего инварианта? С.З. Если вы меня спрашиваете, отвечу: "По-моему, нельзя". Это же все равно как если бы мы, например, попытались определить, что такое транспортное средство, скажем, таким выражением: "Это устройство, в которое наливают бензин". Но бензин в принципе можно залить и в примус, а его никак не назовешь транспортным средством. В то же время трамвай прекрасно обходится и без бензина. В.А. Совершенно верно. А у Эйнштейна получается, что масса (всеобщее, между прочим, свойство материи) зависит от отношения ее скорости к скорости света. Длина и время (тоже всеобщие свойства) опять-таки зависят от той же скорости... Всеобщее определяется частным! А если этого частного нет в данном определении? Как же, например, гравитация может зависеть от скорости света, если этого самого света в гравитационном взаимодействии нет и в помине? С.З. Хорошо, допустим, вы меня убедили: Эйнштейн поступил опрометчиво. Но указать на ошибку - это одно, а найти путь к ее исправлению - совершенно другое. Что же предлагаете вы? В.А. Очевидно, что на роль всеобщих физических инвариантов пригодны лишь те категории, которые имеются абсолютно во всех известных физических структурах и явлениях. Такими всеобщими категориями являются материя, пространство, время. Сюда же, пожалуй, стоит отнести и движение материи в пространстве и времени. Нет ведь ни одного явления в природе, в котором бы так или иначе не участвовала материя, и это явление не происходило бы в пространстве и времени, что, собственно, и означает движение материи. С.З. Словом, вы предлагаете именно эти величины считать аргументами, от которых так или иначе зависят все остальные функции. Ну и что из этого следует? В.А. А из этого простого рассуждения следуют, в общем-то, вовсе не тривиальные выводы. А именно: 1. материя, пространство, время и движение никогда никем не создавались и никаким способом не могут быть уничтожены; 2. пространство в природе существует только евклидово, время линейно и однонаправлено, никаких "кривизн" и "дискретностей" в них нет; 3. не существует и никаких предпочтительных масштабов у этих категорий, так что на всех уровнях материи должны действовать одни и те же физические законы, хотя параметры явлений в микромире, конечно, сильно отличаются от параметров явлений в макромире. С.З. Придираясь к вам, я могу сказать, что в первом выводе, например, никак не отражена роль Господа Бога в создании Вселенной. Во втором пункте своих рассуждений вы никак не отразили возможное существование "черных дыр" и других подобных объектов. В третьем выводе вы опять-таки упустили из виду некоторые явления, имеющие место в микромире и нигде больше... В.А. В ответ на ваши придирки могу сказать следующее. Во-первых, как материалист я, конечно, отрицаю существование творца Вселенной. Материя и все ее атрибуты вечны и ни в каком создателе не нуждаются. Во-вторых, евклидовость пространства не означает, что "черные дыры" не могут существовать. Представьте себе большие сгустки вещества, поглощающего потоки эфира так, что они движутся со скоростью выше скорости света. Вот вам и "черная дыра"! Она не может существовать вечно, когда все это вещество распадется. Но если она существует, то существует в вечном евклидовом пространстве. Безо всяких чудес. А что касается "в-третьих", то никаких особых явлений в микромире действительно нет. Аппарат обычной газовой механики прекрасно описывает любые явления микромира, всему есть аналогия в нашем обычном макромире. В том числе и квантовые явления. С.З. Хорошо, допустим в первом приближении, что вы меня убедили. Ну и что дальше? В.А. На вопрос отвечу вопросом: "В чем сегодня основная трудность физики?" В том, что мы не понимаем глубинной сути явлений. Но ведь мы знаем, что молекулы состоят из атомов, а атомы из элементарных частиц. Правда, мы не ведаем, из чего состоят эти самые "элементарные частицы", а лишь на основании имеющихся фактов можем предполагать, что они далеко не столь элементарны, как это считали, скажем, в первой половине нашего века. Значит, надо разобраться с данной проблемой, а уже потом двигаться дальше. Причем помочь нам в этом может опыт прошлых веков. На протяжении столетий учеными была отработана следующая методология решения подобных задач. Когда материальных образований освоенного уровня организации материи накапливалось много, то в рассмотрение вводился новый "первокирпичик" строения Вселенной. Так, скажем, когда в конце 18 столетия оказалось, что вариантов строения молекул слишком много, в рассмотрение были введены более мелкие "элементы", как их назвал Лавуазье. Впоследствии, в 1824 году, Дальтон вспомнил о греческом "атомос" (так древние греки именовали мельчайшие частицы вещества) и ввел в обиход понятие "атомы". А когда выяснилось, что и "неделимые" атомы имеют свойство делиться, в рассмотрение ввели элементарные частицы. Это случилось в начале нашего века, но уже к середине столетия оказалось, что и этих "первокирпичиков" материи достаточно много, они обладают способностью делиться, превращаться друг в друга и т.д. Словом, похоже, надо вводить в обиход новые элементы, из которых, как из кирпичей здание, придется возводить основы современной физики. С.З. Но ведь такие частицы уже введены. Последнее время достаточно много говорят, скажем, о кварках. Чем они вам не нравятся? В.А. Да хотя бы тем, во-первых, эти кварки никому до сих пор не удавалось зафиксировать, так сказать, в чистом виде, а стало быть, неизвестно, существуют ли они в действительности или это просто очередная выдумка теоретиков. И во-вторых, самих этих кварков - чем дальше, тем становится больше. Сначала было достаточно всего трех. Потом теоретикам понадобилось вводить еще "очарованные", "красивые", "цветовые" кварки. И если дело пойдет так дальше, то вскоре, видимо, с кварками произойдет то же, что и с элементарными частицами, которых на сегодняшний день то ли двести, то ли две тысячи - все зависит от того, как считать. А главное, кварки - это не более мелкие, чем элементарные частицы, образования: по своим размерам и массе они могут быть даже больше. Скажем, масса одного кварка предположительно равна пяти (!) массам протона... С.З. И что же вы предлагаете взамен? В.А. Не изобретать велосипед! Применительно к нашему случаю эта расхожая фраза означает, что есть смысл вернуться к тому, от чего когда-то отказались при довольно сомнительных обстоятельствах, а именно, к теории мирового эфира. С.З. Но позвольте, насколько я помню, мировой эфир - это некая субстанция с немыслимыми свойствами. И разные взаимодействия должна передавать со скоростями чуть ли не выше скорости света. И обладать нулевой инерцией. И быть материей настолько тонкой, что ее присутствие практически не обнаруживается существующими ныне приборами... Стоит ли связываться со столь сомнительным изобретением ума человеческого? В.А. Вот-вот, вашими устами заговорила та самая психологическая инерция, в которой погрязли ныне многие ученые умы. "Эфир? Это мы уже проходили..." И почему-то никого не настораживает, например, тот факт, что вакуум - ту самую субстанцию, которая, по мнению многих, заполняет ныне межпланетное и межзвездное пространство, давно уже перестали считать просто пустотой. Нечего сказать, хороша пустота, если из нее, согласно современным физическим канонам, вполне можно получать и многие элементарные частицы, и энергию. Эта "пустота" обладает диэлектрической и магнитной проницаемостью, поляризацией, разного рода флуктуациями (колебаниями). Именно в вакууме распространяются поля, обеспечивающие четыре основных взаимодействия - ядерные сильные и слабые, электромагнитные и гравитационные. В общем, не случайно академик В.Ф.Миткевич, еще в 30-е годы, размышляя об этом, высказал такую мысль: "Абсолютно пустое пространство, лишенное всякого физического содержания, не может служить ареной распространения каких бы то ни было волн". Ну а если пустота чем-то заполнена, то в конце концов какая разница, как это нечто называть - вакуум или эфир? Я лично предпочитаю последнее название. Оно и появилось раньше, за ним и стоит больше содержания. Доказать это я и берусь в следующем диалоге. ДИАЛОГ ТРЕТИЙ О роли эфира в природе, или разговор о том, как газовые вихри позволяют возвести старую постройку из нового материала В.А. Итак, многие годы ученые разных стран стремились угадать свойства мировой среды, создавали многочисленные модели, гипотезы, теории, - и все неудачно. В чем корень их ошибок? Прежде чем ответить на этот вопрос, давайте вкратце проследим путь развития теории мирового эфира... С.З. Но тогда, видимо, нам придется начать с сэра Исаака Ньютона и его таинственной силы гравитации? В.А. Согласен. И раз уж вы наслышаны об этом, то вам, как говорится, и карты в руки. С.З. Когда двадцать лет тому назад первые люди ступили на поверхность Луны, они поставили перед телекамерами на глазах у многих миллионов зрителей запоминающийся эксперимент. Один из астронавтов уронил куриное перышко и подобранный тут же на Луне камень. Оба предмета одновременно упали в лунную пыль. Многих это удивило, ведь на Земле мы наблюдали бы совершенно иные результаты. Однако виною тому всего лишь сопротивление воздуха - газа, к которому мы привыкли настолько, что подчас его даже не замечаем, но который, как стало очевидно в результате лунного эксперимента, определенно накладывает свое воздействие на некоторые процессы. Ну а какая, интересно, субстанция оказывает решающее воздействие на распространение самой гравитации - той силы, под воздействием которой на Луне ли, на Земле ли и куриное перышко, и камень все равно упадут на поверхность планеты? Первым об этом задумался сам Ньютон - тот человек, который впервые, при помощи несложного уравнения, называемого ныне законом всемирного тяготения, описал, как одно массивное тело может взаимодействовать с другим. Закон этот оказался правильным. Благодаря ему мы понимаем теперь, почему планеты вращаются вокруг Солнца, почему Луна вращается вокруг Земли. Знание этого закона позволяет нам особо не удивляться, что на орбитальной станции наступает невесомость: сила тяжести уравновешивается центробежной силой. Благодаря тому же закону, положенному в основу расчетов небесной баллистики, астронавты смогли попасть на поверхность Луны, на себе ощутить справедливость расчетов земных ученых, задолго до этой экспедиции рассчитавших, что сила тяжести, или гравитация, на поверхности естественного спутника Земли вшестеро меньше земной. Но вот до сих пор никому, в том числе и самому Ньютону, не удалось достаточно наглядно показать, каким именно образом действует эта самая сила гравитации, какова ее природа. Хотя попыток, как уже говорилось, было сделано немало. В.А. И одну из первых, пожалуй, предпринял Лессаж... С.З. Совершенно верно. В один из майских дней 1749 года молодой преподаватель математики и физики Георг Луи Лессаж объяснял своим воспитанникам закон всемирного тяготения. Но когда кто-то из особо пытливых учеников спросил, может ли учитель объяснить причину тяготения, тот только развел руками: "Этого пока не знает никто..." Ученики, вполне возможно, уже на следующий день забыли о том, что учитель не смог ответить на один вопрос. Но сам Лессаж никак не мог забыть об этом. И однажды он вспомнил слова знаменитого Декарта: "Мы считаем сосуд пустым, когда в нем нет воды, на самом деле в таком сосуде остается воздух. Если из 'пустого' сосуда убрать и воздух, в нем опять что-то должно остаться, но мы это 'что-то' уже просто не чувствуем". Внезапно вспыхнула мысль: небесные тела не притягиваются, а подталкиваются друг к другу! И подталкивает их то самое 'нечто', которое мы не ощущаем. В.А. После Лессажа подобная мысль приходила в головы многих других ученых. И все они на первых порах были счастливы своим открытием. Суть его можно описать так: представим себе, что все пространство между небесными телами заполнено неким газом, состоящим из крошечных частиц, летающих во всех направлениях. При определенных условиях эти частицы, наталкиваясь, скажем, на Солнце и Землю, подталкивают их друг к другу. Однако чтобы удовлетворить тем условиям, при котором такое подталкивание возможно, такие частицы, оказывается, должны обладать удивительными свойствами. Должны двигаться со сверхсветовыми скоростями. И при этом, пробегая колоссальные расстояния, не сталкиваться друг с другом. Более того, сами небесные тела тоже не являются преградой для подобных частиц: они пронизывают их насквозь, лишь слегка задерживаясь с своем стремительном беге. Было рассчитано, что именно в таком газе должен выполняться Закон всемирного тяготения, при котором сила взаимного притяжения (или подталкивания, если хотите) прямо пропорциональна их массам и обратно пропорциональна квадрату расстояния между ними. Однако тут же возникает и противоречие. Если Земля движется вокруг Солнца в таком газе, то он непременно должен тормозить ее движение, чего на практике не наблюдается. И это лишь одно из затруднений. Существовали и другие. В те времена модели, гипотезы и теории эфира рассматривали довольно узкий круг явлений. Декарт и Ньютон, к примеру, ничего не знали об электромагнитных феноменах, а тем более о внутриядерных взаимодействиях, хотя по идее эфир должен участвовать и в этих процессах. Модели Навье, Мак-Куллаха, В.Томсона и Дж.Томсона пытались учесть круг электромагнитных явлений, но в суть строения веществ и этим ученым проникнуть практически не удавалось. Кроме того, большинство моделей рассматривали эфир как сплошную среду, в иных случаях даже как некую "идеальную" жидкость. Естественно, такой подход рождал противоречия: с одной стороны, частицы эфира должны были подталкивать тела друг к другу, с другой стороны - не мешать их движению. И наконец, многие теории рассматривают отдельно материю эфира и материю вещества. В итоге Френелю и Лоренцу, к примеру, пришлось изобретать даже три самостоятельные, независимые субстанции: вещество, независимое от эфира; эфир, свободно проникающий сквозь вещество; свет, непонятным образом генерируемый веществом и передаваемый эфиру, да к тому же еще и распространяющийся в нем неведомым образом! Понятное дело, устав от бесплодных попыток создать непротиворечивую модель эфира, многие ученые постепенно стали отказываться и от самой идеи. И напрасно! С.З. То есть, говоря иначе, если ты не сумел обуздать лошадь, это вовсе не значит, что на ней нельзя ездить в принципе.... В.А. Аналогия, скажем прямо, притянутая за уши, но, в общем-то, обрисовывающая суть положения. С.З. Тогда, очевидно, самое время рассказать и о новой модели эфира? В.А. Ну что же, давайте попробуем. Для начала прикинем, какое из трех состояний вещества - твердое, жидкое или газообразное годится для нового эфира. Возьмем любое твердое тело. В нем всегда присутствуют неоднородности, дислокации. А они наверняка будут мешать распространению каких-то взаимодействий (например, той же гравитации) во всех направлениях одинаково. Да и как-то трудно даже чисто психологически представить себе, что все межпланетное пространство заполнено чем-то твердым, а мы этого не замечаем. Теперь представим себе жидкость, помещенную в невесомость. Силы поверхностного натяжения соберут ее в шары. В пространстве между планетами таким образом получится один шар, другой, третий... Между ними опять-таки останутся пустоты, а мы знаем, что межпланетное пространство достаточно изотропно, в нем нет ни сверхпустот, ни шаров с некоей жидкостью. Таким образом, получается, что на роль мирового эфира годится только газ. А наличие в природе тел различной удельной массы говорит о том, что газ может сжиматься в достаточно широких пределах. Он обладает весьма малой вязкостью, а потому небесные тела могут двигаться относительно свободно. Но тот же газ при больших давлениях может "организовать" действие больших сил на малых площадях, как это мы имеем в случае сильных ядерных взаимодействий. С.З. Ну а раз эфир - газ, а не какой-то абстрактный вакуум, значит, он должен иметь все характеристики и параметры, полагающиеся реальному газу: плотность, температуру, давление, вязкость... Так ведь? В.А. Совершенно с вами согласен. И все эти данные удалось рассчитать, поскольку газовая среда достаточно хорошо описывается уравнениями газогидродинамики, которую в данном случае я назвал бы эфиродинамикой. ПАРАМЕТРЫ ЭФИРА В ОКОЛОЗЕМНОМ ПРОСТРАНСТВЕ Эфир в целом ---------------------------------------------------------------- Параметр Величина Размерность ---------------------------------------------------------------- Плотность = 8.85 * 10 ^(-12) кг/м^3 Давление >= 2 * 10 ^(32) н/м^2 Температура <= 7 * 10 ^(-51) К Скорость 1-го звука >= 5.3 * 10 ^(26) м/с Скорость 2-го звука = 3 * 10 ^(8) м/с Коэффициент темпе- ~ 10 ^(5) м^2/с ратуропроводности Коэффициент теп- ~ 2 * 10 ^(91) м * К / с^3 лопроводности Кинематическая ~ 10 ^(5) м^2/с вязкость Динамическая вяз- ~ 10 ^(-6) кг/м/с кость (коэффициент внутреннего трения) Показатель адиабаты ~ 1.4 - Теплоемкость >= 3 * 10 ^(95) м^2 * К / с^2 Энергия в единице >= 2 * 10 ^(32) Дж/м^3 объема ---------------------------------------------------------------- Амер (элемент эфира) ---------------------------------------------------------------- Масса <= 7 * 10 ^(-117) кг Диаметр <= 4 * 10 ^(-45) м Количество в <= 1.3 * 10 ^(105) 1/м единице объема Средняя длина <= 5 * 10 ^(-17) м свободного пробега Средняя скорость ~ 6.6 * 10 ^(21) м/с теплового движения ---------------------------------------------------------------- Более того, можно достаточно наглядно представить, чем же является элемент, или "элементарная частица", такой среды. Иначе его можно, пожалуй, назвать еще амером, поскольку именно этим термином Демокрит когда-то предпочитал называть неделимую часть вещества. "Амер" в переводе означает "истинно неделимый" в отличие от "атома", который имеет в виду что-то неразрезаемое, то есть неделимое достаточно условно. Ведь то, что нельзя разрезать, можно, скажем, разбить. Совокупность амеров образует эфир - газ, в котором могут существовать течения, вихри... С.З. Но вихри ведь тоже бывают разные: большие и маленькие, вращающиеся по часовой стрелке и против, стоящие на месте и перемещающиеся... В.А. Верно. И в данном случае мы можем произвести соответствующую классификацию всех движений эфира, в том числе и вихрей. В основе всех форм движения обычного газа лежит поступательное движение его молекул. В основе эфира лежит тоже поступательное движение амеров. Кроме того, у эфира опять-таки по аналогии с обычным газом должны существовать еще два вида движения - вращательное и диффузионное. В итоге у нас получается, что элементарный объем эфира, как и всякого обычного газа, имеет три формы движения: поступательную, вращательную и диффузионную, каждая из которых имеет свои подвиды. Поступательная: спокойную, без завихрений (ламинарную) форму, а также продольно-колебательную форму (так в обычном воздухе распространяется звуковая волна). Вращательная: форму замкнутого вращения (тор) и разомкнутую (смерч). Диффузионная: температурную форму (диффузия при выравнивании температур внутри какого-то объема), градиентную скоростную, характеризующую перенос количества движения, и массовую, используемую при переносе масс. Вот и все. Всего семь разновидностей. И уверяю вас, никаких "странностей" и "красивостей", а тем более "ароматов" нам больше не понадобится. С.З. Как говорится, хотелось бы верить... Однако раз уж у вас все так хорошо получается, сам собой напрашивается вопрос: неужто до вас никто не мог додуматься до чего-либо подобного? В.А. Ну как же, эфиродинамика, как и всякая уважающая себя наука, имеет достаточно глубокие корни. Предпосылки вихревой теории материи мы, например, можем отыскать уже в учениях древнегреческих философов - Фалеса, Анаксимандра, Гераклита, Парменида, Зенона, Аристотеля... К числу основоположников этой теории в более поздние времена можно отнести и Рене Декарта, который в своих работах "О мире", "Принципы философии" и "Возражения и ответы" довольно отчетливо сформулировал смысл учения о вихревой природе материи. Вихревую модель мы можем найти и в работе В.Томсона "О вихревых атомах", где известный ученый пытался представить атомы состоящими из множества крошечных вихрей. Немногие, наверное, знают, но это факт: свои знаменитые уравнения Дж.Максвелл вывел, проанализировав движения вихрей в жидком эфире. Именно по этому случаю он написал работы "О фарадеевых силовых линиях", "О физических силовых линиях", а также свой знаменитый "Трактат об электричестве и магнетизме". Существуют также гидромеханическая модель атомного ядра и гидромеханические модели элементарных частиц, разработанные Г.Джейлом, в которых частицы представлены в виде петлевых потоков среды. Так что, как видите, предшественников довольно много. Каждый из них положил свой кирпичик в основание постройки, которую ныне мы можем назвать эфиродинамикой. Ну а сама эта наука пытается наглядно объяснить все те процессы, которые мы с вами имеем честь наблюдать в природе. ДИАЛОГ ЧЕТВЕРТЫЙ О строении вещества и полях взаимодействия, или разговор о том, как можно пролить новый свет на старые истины С.З. Итак, в предыдущем диалоге вы грозились нарисовать новыми красками известную картину окружающего мира. И с чего, интересно, вы начнете? В.А. Если не возражаете, с протона. Как известно, именно эта элементарная частица отличается высокой стабильностью. Как же можно предстваить ее в виде эфирного микровихря? Да очень просто: в том случае, если этот вихрь будет замкнут сам на себя, то есть образует в пространстве некий "бублик", или по-научному тор. Структура эфира при такой форме тоже будет отличаться высокой стабильностью. Причем наиболее устойчив будет не просто тороидальный вихрь, а такой, в котором, кроме тороидального движения, имеется еще и кольцевое. То есть, говоря проще, "бублик" наш будет еще и витым. Если мы рассмотрим структуру винтового вихревого тороида с точки зрения гидродинамики, то увидим, что тонкий пограничный слой на поверхности тороида обеспечит плавный переход плотности эфира от тела тороида к свободному эфиру. С другой стороны, этот же слой не позволит газу, входящему в состав тора, рассеяться в пространстве, несмотря на высокую скорость вращения протона. Из внутренней полости протона центробежная сила отбросит эфир к его стенкам, и, таким образом, структура протона будет напоминать трубу, свернутую в кольцо. Благодаря инерционным силам наш протонный тор будет несколько асимметричен и вытянут в направлении движения газа, вокруг его центральной оси. В центре тороида должно быть небольшое отверстие, из которого выбрасывается винтовой поток эфира в окружающее пространство. В результате этого вокруг протона непременно образуется тороидальное винтовое поле свободного эфира. Кроме того, протон, являясь, как и всякий газовый вихрь, более холодным, чем окружающая среда, охлаждает и окружающий эфир, что, как мы убедимся позднее, существенно для создания механизма гравитации. Если два протона сойдутся вместе, то через пограничные слои онм начнут соприкасаться своими стенками. В этом случае они обязательно развернутся антипараллельно, то есть сами торы расположатся параллельно, но вихри будут направлены навстречу друг другу. При этом пограничный слой одного из торов преобразуется так, что в нем будет гаситься кольцевое движение. Тем самым протон превратится в нейтрон; образуется устойчивая система. В принципе составные ядра всех изотопов состоят всего лишь из протонов и нейтронов, и для удержания их друг возле друга не требуется никаких особых условий. Понижение давления в пограничном слое эфира между нуклонами вследствие градиента скоростей позволяет внешнему давлению свободного эфира крепко прижимать нуклоны друг к другу безо всякого "глюонного клея". Расчет по энергиям взаимодействия вполне подтверждает эту наглядную модель. Если в ядре число нуклонов увеличится, скажем, до четырех, они образуют последовательную замкнутую цепь. Внутренний поток эфира становится для них общим. Общим будет и внешний поток эфира. Благодаря этому энергия связи у такой конструкции резко возрастает, образуется альфа-частица. А из них потом можно сконструировать составные ядра всех изотопов. С.З. И в этих моделях будет наглядно показаны и объяснены значения спинов, коэффициентов формы, магнитных моментов и прочих премудростей, которые насовали в свои ядерные модели современные теоретики? В.А. Именно так. Я бы мог подробнейшим образом расписать вам строение всех атомов таблицы Менделеева. Единственное, что меня от этого удерживает, так только соображение, что данное описание разрослось бы до объема "Войны и мира". Или, по крайней мере, "Анны Карениной". С.З. Хорошо, попробую поверить вам на слово. Но вот от следующего коварного вопроса вам не отвертеться. До сих пор вы говорили только о ядрах атомов. Но ведь согласно установившимся представлениям, эти ядра обычно имеют еще и электронные оболочки. Помню, например, какой наглядностью обладает рисунок атома водорода, впервые нарисованный еще Э.Резерфордом и дополненный затем Н.Бором. Вокруг планеты-ядра вращается по орбите спутник-электрон. Все просто и понятно. Зачем тут нужна ваша вихревая модель? В.А. А хотя бы затем, что представления Бора, мягко говоря, не соответствуют действительности. Согласно представлениям, бытующим в современной физике, электрон хотя и представляют этакой точкой-спутником, но, по существу, он представляет собой некое размазанное образование, которое ученые называют "электронным облаком". Причем, согласно принципу неопределенности, можно говорить лишь о некой вероятности присутствия электронов в той или иной части электронного облака. Для практических расчетов такое представление не несет ничего хорошего: формулы и уравнения становятся столь громоздкими, что зачастую справиться с ними удается лишь с помощью ЭВМ. Да и то с определенной степенью точности. В вихревой же модели роль электронной оболочки выполняет присоединенный к ядру винтовой тороидальный вихрь эфира, знак винтового движения которого противоположен знаку винтового движения эфира в пределах ядра. Если в ядре не один протон, как в ядре водорода, а два, как в ядре гелия, то образуются два присоединенных вихря. Они находятся по соседству друг с другом, соприкасаются своими границами, взаимно уравновешены, но не пересекаются. Поскольку каждый из них теперь имеет вдвое меньший телесный угол, то и скорости эфирных потоков в них в 2 раза больше. Это значит, в соответствии с законом Бернулли, что давление в этих потоках упадет и внешнее давление эфира сожмет эти вихри. Обьем системы уменьшится в 2 раза, что соответствует, кстати сказать, экспериментальным данным. Если к ядру гелия присоединится еще один протон, то он расположится сбоку. Соответственно и присоединенный вихрь окажется несимметричным, вытянутым вбок. Оба уже имеющихся вихря подожмутся, их объем уменьшится, но третий вихрь увеличит общий объем. И лишь присоединение четвертого нуклона поставит все на свои места: общий объем опять уменьшится. Таким вот образом могут быть построены все электронные оболочки элементов таблицы Менделеева. Эфиродинамическое моделирование позволяет рассмотреть структуры и устойчивых элементарных частиц вещества, и ядер атомов, и самих атомов, и молекул. Что же касается неустойчивых элементарных частиц, таких, например, как мезоны, их можно рассматривать как остатки устойчивых систем. И вариантов таких "осколков" может быть сколько угодно. Некоторые из них будут более устойчивы, другие менее. Тем не менее все они являются переходными формами вихрей, которые будут распадаться до тех пор, пока винтовые потоки эфира, образующие эти частицы, не замкнутся сами на себя, не образуют наконец устойчивые формы вихрей, которые будут восприниматься как устойчивые микрочастицы - конечный продукт распада. С.З. Но ведь, кроме, так сказать, геометрических форм, частицы микромира отличаются еще и определенными свойствами, скажем, магнитными и электрическими моментами. Каким образом их можно объяснить с точки зрения вихрей? В.А. Тут тоже нет ничего особо заумного. Тороидальное движение эфира вокруг частицы может быть описано с помощью закона Био-Саварра, известного многим еще по курсу физики средней школы, так же как и понятие о магнитном поле. А кольцевое движение может быть описано законом Кулона. Тороид - единственная форма движения газа, способная удержать газ в замкнутом пространстве. А это значит, что подобные формы должны быть широко распространены в эфире, ведь наш мир отличается достаточной степенью устойчивости. Но "подобное рождает подобное". Так можно сказать, перефразируя известное выражение Воланда из романа "Мастер и Маргарита". Система же замкнутых тороидальных вихрей, которые образуются от движения в эфире тороидального же кольца, и есть само по себе магнитное поле. Электрическое поле будет представлять собой систему разомкнутых вихрей. Если часть электронного облака отрывается от возбужденного атома, рождается фотон - система линейных вихрей, обладающая свойствами саморазгона. Причем по мере перемещения в пространстве вихри, составляющие фотон, теряют энергию и увеличиваются в размере примерно так же, как расплывается дымовое кольцо, выдуваемое курильщиком. Увеличение размера кольца наблюдатель воспринимает как увеличение длины волны. С.З. Словом, как я вижу, у вас есть ответы на многие вопросы. Ну, а вот как быть с природой гравитации? Ведь теория эфира, вспомним, возникла как раз из попыток объяснить это явление природы. В.А. И тут дело обстоит, на мой взгляд, достаточно просто. Как известно, любое вихревое образование имеет температуру ниже, чем окружающая его газовая сфера. И как бы вихри ни были ориентированы друг относительно друга в веществе, вместе они будут охлаждать окружающий эфир. Значит, в эфирном пространстве неизбежно возникает градиент температур, который, в свою очередь, приводит к градиенту давления. Говоря иначе, любое тело в эфире будет испытывать на себе разность давлений, которая начнет подталкивать его к источнику холода. Таким образом, для того, чтобы вывести уравнение тяготения, нужно за основу брать тепловые процессы в эфире и уравнение теплопроводности. С.З. Не понимаю. Межпланетное пространство, как известно, холодное. Земля - теплее, а Солнце и вовсе горячее. Причем же здесь градиенты температур, подталкивающие к источнику холода? В.А. Вы говорите о температуре вещества. А рассматривать нужно температуру эфира в свободном пространстве и температуру эфира в веществе. Что такое температура? Это кинетическая энергия одной молекулы. И хотя скорости амеров - частиц эфира - очень велики и многократно превышают скорость света, масса амера очень мала, и поэтому температура эфира и в пространстве, и в веществе, которое само состоит из эфира, получается низкой. При пространства, но и в чисто земных делах. Я верю в это. ---------------------------------------------------------------- ЛИТЕРАТУРА В.А. Ацюковский. Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газоподобном эфире. - М.: Энергоатомиздат, 1990. В.А. Ацюковский. Логические и экспериментальные основы теории относительности. Аналитический обзор. - М.: Издательство МПИ, 1990. В.А. Ацюковский. Материализм и релятивизм. Критика методологии современной теоретической физики. - М.: Энергоатомиздат, 1992. Эфирный ветер.: Сборник переводов статей под редакцией В.А.Ацюковского. - М.: Энергоатомиздат, 1993. Указанные книги можно получить по почте наложенным платежом. Заказы надо направлять по адресу: 140160. Московская область, г.Жуковский, а/я 285. Книги также можно приобрести на лекциях по Эфиродинамике в Политехническом Музее. Подробности Здесь.
Документы, находящееся на этом сервере (http://hokma.chat.ru) предоставляются обладателями авторских прав в соответствии со следующей лицензией. Получая, используя и/или копируя любой документ с этого сервера, Вы признаете, что прочли и поняли условия данной лицензии и обязуетесь их выполнять.